3.454 \(\int \cot ^6(c+d x) (a+b \tan (c+d x))^4 \, dx\)

Optimal. Leaf size=170 \[ \frac{a^2 \left (5 a^2-27 b^2\right ) \cot ^3(c+d x)}{15 d}+\frac{2 a b \left (a^2-b^2\right ) \cot ^2(c+d x)}{d}-\frac{\left (-6 a^2 b^2+a^4+b^4\right ) \cot (c+d x)}{d}+\frac{4 a b \left (a^2-b^2\right ) \log (\sin (c+d x))}{d}-x \left (-6 a^2 b^2+a^4+b^4\right )-\frac{3 a^3 b \cot ^4(c+d x)}{5 d}-\frac{a^2 \cot ^5(c+d x) (a+b \tan (c+d x))^2}{5 d} \]

[Out]

-((a^4 - 6*a^2*b^2 + b^4)*x) - ((a^4 - 6*a^2*b^2 + b^4)*Cot[c + d*x])/d + (2*a*b*(a^2 - b^2)*Cot[c + d*x]^2)/d
 + (a^2*(5*a^2 - 27*b^2)*Cot[c + d*x]^3)/(15*d) - (3*a^3*b*Cot[c + d*x]^4)/(5*d) + (4*a*b*(a^2 - b^2)*Log[Sin[
c + d*x]])/d - (a^2*Cot[c + d*x]^5*(a + b*Tan[c + d*x])^2)/(5*d)

________________________________________________________________________________________

Rubi [A]  time = 0.382967, antiderivative size = 170, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {3565, 3635, 3628, 3529, 3531, 3475} \[ \frac{a^2 \left (5 a^2-27 b^2\right ) \cot ^3(c+d x)}{15 d}+\frac{2 a b \left (a^2-b^2\right ) \cot ^2(c+d x)}{d}-\frac{\left (-6 a^2 b^2+a^4+b^4\right ) \cot (c+d x)}{d}+\frac{4 a b \left (a^2-b^2\right ) \log (\sin (c+d x))}{d}-x \left (-6 a^2 b^2+a^4+b^4\right )-\frac{3 a^3 b \cot ^4(c+d x)}{5 d}-\frac{a^2 \cot ^5(c+d x) (a+b \tan (c+d x))^2}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^6*(a + b*Tan[c + d*x])^4,x]

[Out]

-((a^4 - 6*a^2*b^2 + b^4)*x) - ((a^4 - 6*a^2*b^2 + b^4)*Cot[c + d*x])/d + (2*a*b*(a^2 - b^2)*Cot[c + d*x]^2)/d
 + (a^2*(5*a^2 - 27*b^2)*Cot[c + d*x]^3)/(15*d) - (3*a^3*b*Cot[c + d*x]^4)/(5*d) + (4*a*b*(a^2 - b^2)*Log[Sin[
c + d*x]])/d - (a^2*Cot[c + d*x]^5*(a + b*Tan[c + d*x])^2)/(5*d)

Rule 3565

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[((b*c - a*d)^2*(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 + d^2)), x] - D
ist[1/(d*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^(n + 1)*Simp[a^2*d*(b*d*(
m - 2) - a*c*(n + 1)) + b*(b*c - 2*a*d)*(b*c*(m - 2) + a*d*(n + 1)) - d*(n + 1)*(3*a^2*b*c - b^3*c - a^3*d + 3
*a*b^2*d)*Tan[e + f*x] - b*(a*d*(2*b*c - a*d)*(m + n - 1) - b^2*(c^2*(m - 2) - d^2*(n + 1)))*Tan[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && Gt
Q[m, 2] && LtQ[n, -1] && IntegerQ[2*m]

Rule 3635

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e
_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((b*c - a*d)*(c^2*C - B*c*d + A*d^2)*
(c + d*Tan[e + f*x])^(n + 1))/(d^2*f*(n + 1)*(c^2 + d^2)), x] + Dist[1/(d*(c^2 + d^2)), Int[(c + d*Tan[e + f*x
])^(n + 1)*Simp[a*d*(A*c - c*C + B*d) + b*(c^2*C - B*c*d + A*d^2) + d*(A*b*c + a*B*c - b*c*C - a*A*d + b*B*d +
 a*C*d)*Tan[e + f*x] + b*C*(c^2 + d^2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] &&
NeQ[b*c - a*d, 0] && NeQ[c^2 + d^2, 0] && LtQ[n, -1]

Rule 3628

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[((A*b^2 - a*b*B + a^2*C)*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2 + b^2
)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[b*B + a*(A - C) - (A*b - a*B - b*C)*Tan[e +
 f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0] && LtQ[m, -1] && NeQ[a^2
 + b^2, 0]

Rule 3529

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3531

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((a*c +
 b*d)*x)/(a^2 + b^2), x] + Dist[(b*c - a*d)/(a^2 + b^2), Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[a*c + b*d, 0]

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \cot ^6(c+d x) (a+b \tan (c+d x))^4 \, dx &=-\frac{a^2 \cot ^5(c+d x) (a+b \tan (c+d x))^2}{5 d}+\frac{1}{5} \int \cot ^5(c+d x) (a+b \tan (c+d x)) \left (12 a^2 b-5 a \left (a^2-3 b^2\right ) \tan (c+d x)-b \left (3 a^2-5 b^2\right ) \tan ^2(c+d x)\right ) \, dx\\ &=-\frac{3 a^3 b \cot ^4(c+d x)}{5 d}-\frac{a^2 \cot ^5(c+d x) (a+b \tan (c+d x))^2}{5 d}+\frac{1}{5} \int \cot ^4(c+d x) \left (-a^2 \left (5 a^2-27 b^2\right )-20 a b \left (a^2-b^2\right ) \tan (c+d x)-b^2 \left (3 a^2-5 b^2\right ) \tan ^2(c+d x)\right ) \, dx\\ &=\frac{a^2 \left (5 a^2-27 b^2\right ) \cot ^3(c+d x)}{15 d}-\frac{3 a^3 b \cot ^4(c+d x)}{5 d}-\frac{a^2 \cot ^5(c+d x) (a+b \tan (c+d x))^2}{5 d}+\frac{1}{5} \int \cot ^3(c+d x) \left (-20 a b \left (a^2-b^2\right )+5 \left (a^4-6 a^2 b^2+b^4\right ) \tan (c+d x)\right ) \, dx\\ &=\frac{2 a b \left (a^2-b^2\right ) \cot ^2(c+d x)}{d}+\frac{a^2 \left (5 a^2-27 b^2\right ) \cot ^3(c+d x)}{15 d}-\frac{3 a^3 b \cot ^4(c+d x)}{5 d}-\frac{a^2 \cot ^5(c+d x) (a+b \tan (c+d x))^2}{5 d}+\frac{1}{5} \int \cot ^2(c+d x) \left (5 \left (a^4-6 a^2 b^2+b^4\right )+20 a b \left (a^2-b^2\right ) \tan (c+d x)\right ) \, dx\\ &=-\frac{\left (a^4-6 a^2 b^2+b^4\right ) \cot (c+d x)}{d}+\frac{2 a b \left (a^2-b^2\right ) \cot ^2(c+d x)}{d}+\frac{a^2 \left (5 a^2-27 b^2\right ) \cot ^3(c+d x)}{15 d}-\frac{3 a^3 b \cot ^4(c+d x)}{5 d}-\frac{a^2 \cot ^5(c+d x) (a+b \tan (c+d x))^2}{5 d}+\frac{1}{5} \int \cot (c+d x) \left (20 a b \left (a^2-b^2\right )-5 \left (a^4-6 a^2 b^2+b^4\right ) \tan (c+d x)\right ) \, dx\\ &=-\left (a^4-6 a^2 b^2+b^4\right ) x-\frac{\left (a^4-6 a^2 b^2+b^4\right ) \cot (c+d x)}{d}+\frac{2 a b \left (a^2-b^2\right ) \cot ^2(c+d x)}{d}+\frac{a^2 \left (5 a^2-27 b^2\right ) \cot ^3(c+d x)}{15 d}-\frac{3 a^3 b \cot ^4(c+d x)}{5 d}-\frac{a^2 \cot ^5(c+d x) (a+b \tan (c+d x))^2}{5 d}+\left (4 a b \left (a^2-b^2\right )\right ) \int \cot (c+d x) \, dx\\ &=-\left (a^4-6 a^2 b^2+b^4\right ) x-\frac{\left (a^4-6 a^2 b^2+b^4\right ) \cot (c+d x)}{d}+\frac{2 a b \left (a^2-b^2\right ) \cot ^2(c+d x)}{d}+\frac{a^2 \left (5 a^2-27 b^2\right ) \cot ^3(c+d x)}{15 d}-\frac{3 a^3 b \cot ^4(c+d x)}{5 d}+\frac{4 a b \left (a^2-b^2\right ) \log (\sin (c+d x))}{d}-\frac{a^2 \cot ^5(c+d x) (a+b \tan (c+d x))^2}{5 d}\\ \end{align*}

Mathematica [C]  time = 0.411373, size = 154, normalized size = 0.91 \[ -\frac{-\frac{1}{3} a^2 \left (a^2-6 b^2\right ) \cot ^3(c+d x)+\left (-6 a^2 b^2+a^4+b^4\right ) \cot (c+d x)+a^3 b \cot ^4(c+d x)+\frac{1}{5} a^4 \cot ^5(c+d x)-2 a b (a-b) (a+b) \cot ^2(c+d x)+\frac{1}{2} i (a-i b)^4 \log (-\cot (c+d x)+i)-\frac{1}{2} i (a+i b)^4 \log (\cot (c+d x)+i)}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^6*(a + b*Tan[c + d*x])^4,x]

[Out]

-(((a^4 - 6*a^2*b^2 + b^4)*Cot[c + d*x] - 2*a*(a - b)*b*(a + b)*Cot[c + d*x]^2 - (a^2*(a^2 - 6*b^2)*Cot[c + d*
x]^3)/3 + a^3*b*Cot[c + d*x]^4 + (a^4*Cot[c + d*x]^5)/5 + (I/2)*(a - I*b)^4*Log[I - Cot[c + d*x]] - (I/2)*(a +
 I*b)^4*Log[I + Cot[c + d*x]])/d)

________________________________________________________________________________________

Maple [A]  time = 0.061, size = 232, normalized size = 1.4 \begin{align*} -{b}^{4}x-{\frac{{b}^{4}\cot \left ( dx+c \right ) }{d}}-{\frac{{b}^{4}c}{d}}-2\,{\frac{{b}^{3}a \left ( \cot \left ( dx+c \right ) \right ) ^{2}}{d}}-4\,{\frac{{b}^{3}a\ln \left ( \sin \left ( dx+c \right ) \right ) }{d}}-2\,{\frac{{a}^{2}{b}^{2} \left ( \cot \left ( dx+c \right ) \right ) ^{3}}{d}}+6\,{a}^{2}{b}^{2}x+6\,{\frac{{a}^{2}{b}^{2}\cot \left ( dx+c \right ) }{d}}+6\,{\frac{{a}^{2}{b}^{2}c}{d}}-{\frac{b{a}^{3} \left ( \cot \left ( dx+c \right ) \right ) ^{4}}{d}}+2\,{\frac{b{a}^{3} \left ( \cot \left ( dx+c \right ) \right ) ^{2}}{d}}+4\,{\frac{b{a}^{3}\ln \left ( \sin \left ( dx+c \right ) \right ) }{d}}-{\frac{{a}^{4} \left ( \cot \left ( dx+c \right ) \right ) ^{5}}{5\,d}}+{\frac{{a}^{4} \left ( \cot \left ( dx+c \right ) \right ) ^{3}}{3\,d}}-{\frac{{a}^{4}\cot \left ( dx+c \right ) }{d}}-{a}^{4}x-{\frac{{a}^{4}c}{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^6*(a+b*tan(d*x+c))^4,x)

[Out]

-b^4*x-1/d*b^4*cot(d*x+c)-1/d*b^4*c-2/d*b^3*a*cot(d*x+c)^2-4/d*b^3*a*ln(sin(d*x+c))-2/d*a^2*b^2*cot(d*x+c)^3+6
*a^2*b^2*x+6/d*a^2*b^2*cot(d*x+c)+6/d*a^2*b^2*c-a^3*b*cot(d*x+c)^4/d+2*a^3*b*cot(d*x+c)^2/d+4*a^3*b*ln(sin(d*x
+c))/d-1/5/d*a^4*cot(d*x+c)^5+1/3*a^4*cot(d*x+c)^3/d-a^4*cot(d*x+c)/d-a^4*x-1/d*a^4*c

________________________________________________________________________________________

Maxima [A]  time = 1.5249, size = 230, normalized size = 1.35 \begin{align*} -\frac{15 \,{\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )}{\left (d x + c\right )} + 30 \,{\left (a^{3} b - a b^{3}\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right ) - 60 \,{\left (a^{3} b - a b^{3}\right )} \log \left (\tan \left (d x + c\right )\right ) + \frac{15 \, a^{3} b \tan \left (d x + c\right ) + 15 \,{\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )} \tan \left (d x + c\right )^{4} + 3 \, a^{4} - 30 \,{\left (a^{3} b - a b^{3}\right )} \tan \left (d x + c\right )^{3} - 5 \,{\left (a^{4} - 6 \, a^{2} b^{2}\right )} \tan \left (d x + c\right )^{2}}{\tan \left (d x + c\right )^{5}}}{15 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^6*(a+b*tan(d*x+c))^4,x, algorithm="maxima")

[Out]

-1/15*(15*(a^4 - 6*a^2*b^2 + b^4)*(d*x + c) + 30*(a^3*b - a*b^3)*log(tan(d*x + c)^2 + 1) - 60*(a^3*b - a*b^3)*
log(tan(d*x + c)) + (15*a^3*b*tan(d*x + c) + 15*(a^4 - 6*a^2*b^2 + b^4)*tan(d*x + c)^4 + 3*a^4 - 30*(a^3*b - a
*b^3)*tan(d*x + c)^3 - 5*(a^4 - 6*a^2*b^2)*tan(d*x + c)^2)/tan(d*x + c)^5)/d

________________________________________________________________________________________

Fricas [A]  time = 2.03318, size = 433, normalized size = 2.55 \begin{align*} \frac{30 \,{\left (a^{3} b - a b^{3}\right )} \log \left (\frac{\tan \left (d x + c\right )^{2}}{\tan \left (d x + c\right )^{2} + 1}\right ) \tan \left (d x + c\right )^{5} + 15 \,{\left (3 \, a^{3} b - 2 \, a b^{3} -{\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )} d x\right )} \tan \left (d x + c\right )^{5} - 15 \, a^{3} b \tan \left (d x + c\right ) - 15 \,{\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )} \tan \left (d x + c\right )^{4} - 3 \, a^{4} + 30 \,{\left (a^{3} b - a b^{3}\right )} \tan \left (d x + c\right )^{3} + 5 \,{\left (a^{4} - 6 \, a^{2} b^{2}\right )} \tan \left (d x + c\right )^{2}}{15 \, d \tan \left (d x + c\right )^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^6*(a+b*tan(d*x+c))^4,x, algorithm="fricas")

[Out]

1/15*(30*(a^3*b - a*b^3)*log(tan(d*x + c)^2/(tan(d*x + c)^2 + 1))*tan(d*x + c)^5 + 15*(3*a^3*b - 2*a*b^3 - (a^
4 - 6*a^2*b^2 + b^4)*d*x)*tan(d*x + c)^5 - 15*a^3*b*tan(d*x + c) - 15*(a^4 - 6*a^2*b^2 + b^4)*tan(d*x + c)^4 -
 3*a^4 + 30*(a^3*b - a*b^3)*tan(d*x + c)^3 + 5*(a^4 - 6*a^2*b^2)*tan(d*x + c)^2)/(d*tan(d*x + c)^5)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**6*(a+b*tan(d*x+c))**4,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 2.6735, size = 562, normalized size = 3.31 \begin{align*} \frac{3 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 30 \, a^{3} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 35 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 120 \, a^{2} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 360 \, a^{3} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 240 \, a b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 330 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1800 \, a^{2} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 240 \, b^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 480 \,{\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )}{\left (d x + c\right )} - 1920 \,{\left (a^{3} b - a b^{3}\right )} \log \left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right ) + 1920 \,{\left (a^{3} b - a b^{3}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right ) - \frac{4384 \, a^{3} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 4384 \, a b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 330 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 1800 \, a^{2} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} + 240 \, b^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 360 \, a^{3} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 240 \, a b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 35 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 120 \, a^{2} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 30 \, a^{3} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 3 \, a^{4}}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5}}}{480 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^6*(a+b*tan(d*x+c))^4,x, algorithm="giac")

[Out]

1/480*(3*a^4*tan(1/2*d*x + 1/2*c)^5 - 30*a^3*b*tan(1/2*d*x + 1/2*c)^4 - 35*a^4*tan(1/2*d*x + 1/2*c)^3 + 120*a^
2*b^2*tan(1/2*d*x + 1/2*c)^3 + 360*a^3*b*tan(1/2*d*x + 1/2*c)^2 - 240*a*b^3*tan(1/2*d*x + 1/2*c)^2 + 330*a^4*t
an(1/2*d*x + 1/2*c) - 1800*a^2*b^2*tan(1/2*d*x + 1/2*c) + 240*b^4*tan(1/2*d*x + 1/2*c) - 480*(a^4 - 6*a^2*b^2
+ b^4)*(d*x + c) - 1920*(a^3*b - a*b^3)*log(tan(1/2*d*x + 1/2*c)^2 + 1) + 1920*(a^3*b - a*b^3)*log(abs(tan(1/2
*d*x + 1/2*c))) - (4384*a^3*b*tan(1/2*d*x + 1/2*c)^5 - 4384*a*b^3*tan(1/2*d*x + 1/2*c)^5 + 330*a^4*tan(1/2*d*x
 + 1/2*c)^4 - 1800*a^2*b^2*tan(1/2*d*x + 1/2*c)^4 + 240*b^4*tan(1/2*d*x + 1/2*c)^4 - 360*a^3*b*tan(1/2*d*x + 1
/2*c)^3 + 240*a*b^3*tan(1/2*d*x + 1/2*c)^3 - 35*a^4*tan(1/2*d*x + 1/2*c)^2 + 120*a^2*b^2*tan(1/2*d*x + 1/2*c)^
2 + 30*a^3*b*tan(1/2*d*x + 1/2*c) + 3*a^4)/tan(1/2*d*x + 1/2*c)^5)/d